Skip to main content
Close
Login Register
Search
  • About
    • What We Do
    • Who We Are
    • FAQs
  • Our Writing
    • Explainers
    • Essays
    • Letterbox
    • More
  • Podcasts
  • Our Events
  • Projects
    • Power In The Food Systems
    • Local-Global Scale Project
    • MEAT: The Four Futures Podcast
    • Fuel To Fork
    • Nature
    • Reckoning with Regeneration
    • SHIFT
    • Rethinking the Global Soy Dilemma
  • Resources
  • Opportunities
    • Jobs
    • Funding
    • Courses
    • Collaborations
    • Events
  • Newsletter
  • TABLE (EN)
Search
Back

Carbon footprint

Image
Image: Leon Brooks, Pina plantation, Wikimedia Commons, Public domain
Journal articles
Halting farmland expansion protects carbon stocks
A recent paper uses data from three countries (Ghana, Mexico and Poland) to determine whether more carbon can be kept in above-ground stocks by land sparing (increasing farms yields to minimise the conversion of natural habitats to farmland) or land sharing (increasing carbon stocks on farms, at the cost of converting more natural habitat to farmland because of lower yields). Land sparing maintained the highest above-ground carbon stocks in all cases studied.
Read
Image
Image: Didgeman, White wine red, Pixabay, CC0 Creative Commons
Journal articles
Climate impact of alcohol consumption in Sweden
Alcohol production, packaging and transport in Sweden has a carbon footprint of 52 kg CO2 eq. per person and accounts for around 3% of dietary emissions, according to a new paper by FCRN member Elinor Hallström. Per litre of beverage, wine, strong wine and liquor have higher carbon footprints than beer. This study does not include emissions from retail or consumer activities.
Read
Image
Image: Ian Sherlock, Fishing boat leaving, Canary Islands, Wikimedia Commons, Creative Commons Attribution-Share Alike 2.0 Generic
Journal articles
Fuel use and greenhouse gas emissions of world fisheries
A new paper finds that the global marine fishing fleet produces greenhouse gas emissions equivalent to 4% of the total emissions from global food production. The types of fisheries with the highest emissions intensity per unit of catch are those using motorised craft (vs. non-motorised), those harvesting for human consumption (vs. catches used for meal, oil or non-food uses), fishing for crustaceans (vs. other species types) and fisheries in China (vs. those in other regions).
Read
Image
News and resources
Interactive guide: Understanding food and climate change
The Centre for Ecoliteracy, a Californian non-profit, has produced a free interactive guide to understanding food and climate change, covering both how climate change affects the food system and how the food system contributes to climate change.
Read
Image
Books
Carbon sequestration in agricultural ecosystems
This book, by Klaus Lorenz and Rattan Lal, discusses the present state of knowledge on soil carbon dynamics in different types of agricultural systems, including croplands, grasslands, wetlands and agroforestry systems. It also discusses bioenergy and biochar.
Read
Image
Reports
Reducing UK emissions: 2018 progress report
The UK’s Committee on Climate Change has released its 2018 Progress Report to Parliament on Reducing UK Emissions. Chapter 6 focuses on agriculture and land use, land-use change and forestry. The report finds the UK agricultural emissions were unchanged between 2008 and 2016. In 2017, half of farmers did not think it was important to consider emissions when making decisions about farming practices. The forestry sector’s ability to sequester carbon has levelled off due to the average age of trees increasing relative to the past. Chapter 6 makes only passing reference to demand-side measures for agricultural emissions reductions (see Figure 6.9).
Read
Image
Image: sarangib, Oil Palm Tree, Pixabay, CC0 Creative Commons
Journal articles
Carbon impacts of palm oil and rubber plantations
A recent paper assesses the carbon implications of converting Indonesian rainforests to oil palm monocultures, rubber monocultures or rubber agroforestry systems (known as “jungle rubber”). It finds that carbon losses are greatest from oil palm plantations and lowest from jungle rubber systems, in all cases being mainly from loss of aboveground carbon stocks. The paper points out that, “Thorough assessments of land-use impacts on resources such as biodiversity, nutrients, and water must complement this synthesis on C but are still not available.”
Read
Image
Image: Charles Haynes, Dosa (rice pancake) with a cup of ghee (clarified butter) at Mavalli Tiffin Room in Bangalore, Wikimedia Commons, Creative Commons Attribution-Share Alike 2.0 Generic
Journal articles
Emissions and water use of Indian dietary patterns
FCRN member Dr Rosemary Green of the London School of Hygiene & Tropical Medicine has published a paper that calculates the greenhouse gas (GHG) emissions and water use associated with five dietary patterns in India. As shown below, GHG emissions per capita are highest for the “rice and meat” dietary pattern (at 1.2 tonnes CO2 eq. per year) and lowest for the “wheat, rice and oils” pattern (at 0.8 tonnes CO2 eq. per year). For comparison, per capita dietary GHG emissions in the UK have been estimated at 2.6 tonnes CO2 eq. per year for high meat eaters and 1.1 tonnes CO2 eq. per year for vegans (Scarborough et al., 2014). Water use is highest for the “wheat, rice and oils” pattern and lowest for the “rice and low diversity” pattern.
Read
Image
Image: Tobias Akerboom, Complaining cow, Flickr, Creative Commons Attribution 2.0 Generic
Journal articles
New way to evaluate short-lived greenhouse gas emissions
A paper proposes a new method for evaluating the climate impact of short-lived greenhouse gases (GHGs) such as methane. Different GHGs are currently assessed on the basis of global warming potential (GWP), calculated as carbon dioxide equivalent, usually over a 100 year time horizon. The paper authors say that this misrepresents the impact of short-lived GHGs, because they have stronger climate impacts shortly after being released and lower impacts after being in the atmosphere for some time.
Read
  • VIEW MORE

Sign up for Fodder, our newsletter covering sustainable food news.

Sign up
  • Glossary
  • About
  • Our Writing
  • Podcasts
  • Resources

Social

YouTube Facebook Instagram

© Copyright 2025

A collaboration between: